Type: \(\displaystyle A^{2}_2+4A^{1}_1\) (Dynkin type computed to be: \(\displaystyle A^{2}_2+4A^{1}_1\))
Simple basis: 6 vectors: (1, 2, 2, 2, 2, 2, 2, 1), (0, -1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 2, 2, 2, 2, 1), (0, 0, 0, 0, 2, 2, 2, 1), (0, 0, 0, 0, 0, 2, 2, 1), (0, 0, 0, 0, 0, 0, 2, 1)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_1
simple basis centralizer: 1 vectors: (0, 0, 0, 0, 0, 0, 0, 1)
Number of k-submodules of g: 37
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{6}}+V_{\omega_{5}+\omega_{6}}+V_{\omega_{4}+\omega_{6}}+V_{\omega_{3}+\omega_{6}}+V_{\omega_{2}+\omega_{6}}+V_{\omega_{1}+\omega_{6}}+V_{2\omega_{5}}+V_{\omega_{4}+\omega_{5}}+V_{\omega_{3}+\omega_{5}}+V_{\omega_{2}+\omega_{5}}+V_{\omega_{1}+\omega_{5}}+V_{2\omega_{4}}+V_{\omega_{3}+\omega_{4}}+V_{\omega_{2}+\omega_{4}}+V_{\omega_{1}+\omega_{4}}+V_{2\omega_{3}}+V_{\omega_{2}+\omega_{3}}+V_{\omega_{1}+\omega_{3}}+V_{2\omega_{2}}+V_{\omega_{1}+\omega_{2}}+V_{2\omega_{1}}+2V_{\omega_{6}}+2V_{\omega_{5}}+2V_{\omega_{4}}+2V_{\omega_{3}}+2V_{\omega_{2}}+2V_{\omega_{1}}+4V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 0, 0, -1)g_{-8}-2\varepsilon_{8}
Module 22(0, 0, 0, 0, 0, 0, -1, -1)(0, 0, 0, 0, 0, 0, 1, 0)g_{7}
g_{-15}
\varepsilon_{7}-\varepsilon_{8}
-\varepsilon_{7}-\varepsilon_{8}
Module 31(0, 0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 0, 1)g_{8}2\varepsilon_{8}
Module 42(0, 0, 0, 0, 0, -1, -1, -1)(0, 0, 0, 0, 0, 1, 1, 0)g_{14}
g_{-21}
\varepsilon_{6}-\varepsilon_{8}
-\varepsilon_{6}-\varepsilon_{8}
Module 52(0, 0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, 0, 1, 1)g_{15}
g_{-7}
\varepsilon_{7}+\varepsilon_{8}
-\varepsilon_{7}+\varepsilon_{8}
Module 62(0, 0, 0, 0, -1, -1, -1, -1)(0, 0, 0, 0, 1, 1, 1, 0)g_{20}
g_{-27}
\varepsilon_{5}-\varepsilon_{8}
-\varepsilon_{5}-\varepsilon_{8}
Module 72(0, 0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, 0, 1, 1, 1)g_{21}
g_{-14}
\varepsilon_{6}+\varepsilon_{8}
-\varepsilon_{6}+\varepsilon_{8}
Module 83(0, 0, 0, 0, 0, 0, -2, -1)(0, 0, 0, 0, 0, 0, 2, 1)g_{22}
h_{8}+2h_{7}
g_{-22}
2\varepsilon_{7}
0
-2\varepsilon_{7}
Module 92(0, 0, 0, -1, -1, -1, -1, -1)(0, 0, 0, 1, 1, 1, 1, 0)g_{26}
g_{-32}
\varepsilon_{4}-\varepsilon_{8}
-\varepsilon_{4}-\varepsilon_{8}
Module 102(0, 0, 0, 0, -1, -1, -1, 0)(0, 0, 0, 0, 1, 1, 1, 1)g_{27}
g_{-20}
\varepsilon_{5}+\varepsilon_{8}
-\varepsilon_{5}+\varepsilon_{8}
Module 114(0, 0, 0, 0, 0, -1, -2, -1)(0, 0, 0, 0, 0, 1, 2, 1)g_{28}
g_{-6}
g_{6}
g_{-28}
\varepsilon_{6}+\varepsilon_{7}
-\varepsilon_{6}+\varepsilon_{7}
\varepsilon_{6}-\varepsilon_{7}
-\varepsilon_{6}-\varepsilon_{7}
Module 123(-1, -1, -1, -1, -1, -1, -1, -1)(0, 0, 1, 1, 1, 1, 1, 0)g_{31}
g_{36}
g_{-45}
\varepsilon_{3}-\varepsilon_{8}
\varepsilon_{2}-\varepsilon_{8}
-\varepsilon_{1}-\varepsilon_{8}
Module 132(0, 0, 0, -1, -1, -1, -1, 0)(0, 0, 0, 1, 1, 1, 1, 1)g_{32}
g_{-26}
\varepsilon_{4}+\varepsilon_{8}
-\varepsilon_{4}+\varepsilon_{8}
Module 144(0, 0, 0, 0, -1, -1, -2, -1)(0, 0, 0, 0, 1, 1, 2, 1)g_{33}
g_{-13}
g_{13}
g_{-33}
\varepsilon_{5}+\varepsilon_{7}
-\varepsilon_{5}+\varepsilon_{7}
\varepsilon_{5}-\varepsilon_{7}
-\varepsilon_{5}-\varepsilon_{7}
Module 153(0, 0, 0, 0, 0, -2, -2, -1)(0, 0, 0, 0, 0, 2, 2, 1)g_{34}
h_{8}+2h_{7}+2h_{6}
g_{-34}
2\varepsilon_{6}
0
-2\varepsilon_{6}
Module 163(-1, -1, -1, -1, -1, -1, -1, 0)(0, 0, 1, 1, 1, 1, 1, 1)g_{37}
g_{41}
g_{-40}
\varepsilon_{3}+\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{8}
Module 174(0, 0, 0, -1, -1, -1, -2, -1)(0, 0, 0, 1, 1, 1, 2, 1)g_{38}
g_{-19}
g_{19}
g_{-38}
\varepsilon_{4}+\varepsilon_{7}
-\varepsilon_{4}+\varepsilon_{7}
\varepsilon_{4}-\varepsilon_{7}
-\varepsilon_{4}-\varepsilon_{7}
Module 184(0, 0, 0, 0, -1, -2, -2, -1)(0, 0, 0, 0, 1, 2, 2, 1)g_{39}
g_{-5}
g_{5}
g_{-39}
\varepsilon_{5}+\varepsilon_{6}
-\varepsilon_{5}+\varepsilon_{6}
\varepsilon_{5}-\varepsilon_{6}
-\varepsilon_{5}-\varepsilon_{6}
Module 193(0, 0, -1, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 1, 1, 0)g_{40}
g_{-41}
g_{-37}
\varepsilon_{1}-\varepsilon_{8}
-\varepsilon_{2}-\varepsilon_{8}
-\varepsilon_{3}-\varepsilon_{8}
Module 206(-1, -1, -1, -1, -1, -1, -2, -1)(0, 0, 1, 1, 1, 1, 2, 1)g_{42}
g_{46}
g_{25}
g_{-35}
g_{30}
g_{-49}
\varepsilon_{3}+\varepsilon_{7}
\varepsilon_{2}+\varepsilon_{7}
\varepsilon_{3}-\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{7}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{1}-\varepsilon_{7}
Module 214(0, 0, 0, -1, -1, -2, -2, -1)(0, 0, 0, 1, 1, 2, 2, 1)g_{43}
g_{-12}
g_{12}
g_{-43}
\varepsilon_{4}+\varepsilon_{6}
-\varepsilon_{4}+\varepsilon_{6}
\varepsilon_{4}-\varepsilon_{6}
-\varepsilon_{4}-\varepsilon_{6}
Module 223(0, 0, 0, 0, -2, -2, -2, -1)(0, 0, 0, 0, 2, 2, 2, 1)g_{44}
h_{8}+2h_{7}+2h_{6}+2h_{5}
g_{-44}
2\varepsilon_{5}
0
-2\varepsilon_{5}
Module 233(0, 0, -1, -1, -1, -1, -1, 0)(1, 1, 1, 1, 1, 1, 1, 1)g_{45}
g_{-36}
g_{-31}
\varepsilon_{1}+\varepsilon_{8}
-\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{3}+\varepsilon_{8}
Module 246(-1, -1, -1, -1, -1, -2, -2, -1)(0, 0, 1, 1, 1, 2, 2, 1)g_{47}
g_{50}
g_{18}
g_{-29}
g_{24}
g_{-53}
\varepsilon_{3}+\varepsilon_{6}
\varepsilon_{2}+\varepsilon_{6}
\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 254(0, 0, 0, -1, -2, -2, -2, -1)(0, 0, 0, 1, 2, 2, 2, 1)g_{48}
g_{-4}
g_{4}
g_{-48}
\varepsilon_{4}+\varepsilon_{5}
-\varepsilon_{4}+\varepsilon_{5}
\varepsilon_{4}-\varepsilon_{5}
-\varepsilon_{4}-\varepsilon_{5}
Module 266(0, 0, -1, -1, -1, -1, -2, -1)(1, 1, 1, 1, 1, 1, 2, 1)g_{49}
g_{-30}
g_{35}
g_{-25}
g_{-46}
g_{-42}
\varepsilon_{1}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{7}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{7}
-\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{3}-\varepsilon_{7}
Module 276(-1, -1, -1, -1, -2, -2, -2, -1)(0, 0, 1, 1, 2, 2, 2, 1)g_{51}
g_{54}
g_{11}
g_{-23}
g_{17}
g_{-56}
\varepsilon_{3}+\varepsilon_{5}
\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 283(0, 0, 0, -2, -2, -2, -2, -1)(0, 0, 0, 2, 2, 2, 2, 1)g_{52}
h_{8}+2h_{7}+2h_{6}+2h_{5}+2h_{4}
g_{-52}
2\varepsilon_{4}
0
-2\varepsilon_{4}
Module 296(0, 0, -1, -1, -1, -2, -2, -1)(1, 1, 1, 1, 1, 2, 2, 1)g_{53}
g_{-24}
g_{29}
g_{-18}
g_{-50}
g_{-47}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
Module 306(-1, -1, -1, -2, -2, -2, -2, -1)(0, 0, 1, 2, 2, 2, 2, 1)g_{55}
g_{57}
g_{3}
g_{-16}
g_{10}
g_{-59}
\varepsilon_{3}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{3}-\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 316(0, 0, -1, -1, -2, -2, -2, -1)(1, 1, 1, 1, 2, 2, 2, 1)g_{56}
g_{-17}
g_{23}
g_{-11}
g_{-54}
g_{-51}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
Module 326(-2, -2, -2, -2, -2, -2, -2, -1)(0, 0, 2, 2, 2, 2, 2, 1)g_{58}
g_{60}
g_{-9}
g_{62}
g_{-1}
g_{-64}
2\varepsilon_{3}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
2\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{2}
-2\varepsilon_{1}
Module 336(0, 0, -1, -2, -2, -2, -2, -1)(1, 1, 1, 2, 2, 2, 2, 1)g_{59}
g_{-10}
g_{16}
g_{-3}
g_{-57}
g_{-55}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{3}-\varepsilon_{4}
Module 348(-1, -1, -2, -2, -2, -2, -2, -1)(1, 1, 2, 2, 2, 2, 2, 1)g_{61}
g_{-2}
g_{63}
-h_{2}
h_{8}+2h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-63}
g_{2}
g_{-61}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{2}
0
0
-\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 356(0, 0, -2, -2, -2, -2, -2, -1)(2, 2, 2, 2, 2, 2, 2, 1)g_{64}
g_{1}
g_{-62}
g_{9}
g_{-60}
g_{-58}
2\varepsilon_{1}
\varepsilon_{1}-\varepsilon_{2}
-2\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
-2\varepsilon_{3}
Module 361(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{7}+h_{6}+h_{5}+h_{4}+h_{3}-h_{1}0
Module 371(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{8}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 33
Heirs rejected due to not being maximally dominant: 1
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 1
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{2}_2+3A^{1}_1
Potential Dynkin type extensions: A^{2}_2+5A^{1}_1,